Current Issue : July-September Volume : 2024 Issue Number : 3 Articles : 5 Articles
This study introduces a data-driven approach for updating the fatigue failure probability of the orthotropic steel deck (OSD) using Bayesian backward propagation. The OSD in steel bridges is considered as a parallel system composed of two critical fatigue-prone components, namely, the rib-to-diaphragm and rib-to-deck joints. A probabilistic model for fatigue reliability is established based on the equivalent structural stress method and limit state function. The system-level fatigue reliability model is then constructed, taking into account the correlations between limit states of individual components through Bayesian network forward propagation. The key advantage of the Bayesian network-based framework is its ability to perform backward propagation, allowing for the updating of failure probabilities for critical components when the system-level failure of the OSD is observed. Consequently, the proposed approach enables the identification of vulnerable components through data-driven fatigue failure probability updating. Finally, the approach is applied to a real instrumented steel bridge to determine the time-dependent fatigue failure probability at both the system and component levels over its service life. The results show that the component-level fatigue failure probability model will underestimate the fatigue life in comparison to the system-level model. Meanwhile, the proposed method could identify vulnerable components by quantifying the fatigue failure probability of in-service steel bridges....
The Artemis Program, for constructing the lunar base, is in progress. How to design and construct architectural and civil engineering structures in the lunar environment has become an important issue. The lunar surface is covered with soft sand, called regolith, and it is required to protect lunar bases and structures, as well as internal precision equipment, against vibrational disturbances such as moonquakes and meteorite collisions. Therefore, in this study, the static and cyclic triaxial compression tests of the regolith simulant were conducted. The reference strain and equivalent damping factor of the regolith simulant were smaller compared to sandy soil on Earth. In addition, a shaking table test using model specimens was conducted on the response properties of regolith ground alone and structures set on regolith ground. The buried foundation and pile foundation notably suppressed the horizontal response attributed to the rocking component compared to a direct foundation....
How to evaluate the reliability of deep soft rock tunnels under high stress is a very important problem to be solved. In this paper, we proposed a practical stochastic reliability method based on the third-generation non-dominated sorting genetic algorithm (NSGA–III) and eXtreme Gradient Boosting (XGBoost). The proposed method used the Latin hypercube sampling method to generate the dataset samples of geo-mechanical parameters and adopted XGBoost to establish the model of the nonlinear relationship between displacements and surrounding rock mechanical parameters. And NSGA–III was used to optimize the surrogate model hyper-parameters. Finally, the failure probability was computed by the optimized surrogate model. The proposed approach was firstly implemented in the analysis of a horseshoe-shaped highway tunnel to illustrate the efficiency of the approach. Then, in comparison to the support vector regression method and the back propagation neural network method, the feasibility, validity and advantages of XGBoost were demonstrated for practical problems. Using XGBoost to achieve Monte Carlo simulation, a surrogate solution can be provided for numerical simulation analysis to overcome the time-consuming reliability evaluation of initial support structures in soft rock tunnels. The proposed method can evaluate quickly the large deformation disaster risks of non-circular deep soft rock tunnels....
The pylon of the Xinshougang Bridge, a welded steel box arch with a variable cross-section, exhibits asymmetrical design and unevenly inclined limb ends. The segmented assembly of this uniquely shaped steel pylon necessitates precise splicing. In this paper, a novel three-point method for segment attitude positioning is proposed based on the local coordinate system. This method facilitates accurate coordinate translation and attitude alignment between the section preparation facility and the construction site. Furthermore, a predictive methodology for segment posture during erection is introduced, aiming to minimize misalignments at the connection interfaces. This approach accounts for potential deviations arising in manufacturing and erection phases. The synergistic application of these methods effectively ensures the precise geometric shape of the bending and twisting steel tower throughout its phased construction....
Due to the complexity in the heterogeneous internal structure and interactions between rocks and soil, the slide of soil–rock mixed slope is usually more complex than that of a homogeneous soil slope. This paper investigated the stability of soil–rock mixed slopes with finite element method (FEM) based on random heterogeneous structure. An image-aided approach was used to generate the 2-D and 3-D digital rocks to ensure the morphology of digital rocks was similar with the real rocks. The 2-D and 3-D soil–rock mixed slopes were then generated by placing the digital rocks into the soil matrix. The generated heterogeneous structures of soil–rock mixed slope were imported into ABAQUS for numerical analysis. The effect of rock content, spatial distributions, material properties, and rock–soil interface on the stability of soil–rock mixed slopes were analyzed. Results show that the stability factor of the soil–rock mixed slope increases with the increase of rock content. The rocks can play a certain degree of antislide effect in the slope. The uneven spatial distribution of rocks has effect on the overall stability of soil–rock mixed slope. This effect is more significant when the rock content is moderate. Rocks distributed in the middle layer of the slope may improve the overall antisliding performance of the slope. The stability factor decreases with the increase of rock density. While the effect of rock elastic modulus on stability of soil–rock mixed slope is relatively limited. The contact condition at the soil–rock interface has effect on the overall stability of soil–rock mixed slope. It is recommended to properly determine the interface properties for stability analysis of soil–rock mixed slope....
Loading....